Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38473886

RESUMO

Caffeic acid O-methyltransferase (COMT) participates in various physiological activities in plants, such as positive responses to abiotic stresses and the signal transduction of phytohormones. In this study, 18 COMT genes were identified in the chromosome-level reference genome of mango, named MiCOMTs. A phylogenetic tree containing nine groups (I-IX) was constructed based on the amino acid sequences of the 71 COMT proteins from seven species. The phylogenetic tree indicated that the members of the MiCOMTs could be divided into four groups. Quantitative real-time PCR showed that all MiCOMT genes have particularly high expression levels during flowering. The expression levels of MiCOMTs were different under abiotic and biotic stresses, including salt and stimulated drought stresses, ABA and SA treatment, as well as Xanthomonas campestris pv. mangiferaeindicae and Colletotrichum gloeosporioides infection, respectively. Among them, the expression level of MiCOMT1 was significantly up-regulated at 6-72 h after salt and stimulated drought stresses. The results of gene function analysis via the transient overexpression of the MiCOMT1 gene in Nicotiana benthamiana showed that the MiCOMT1 gene can promote the accumulation of ABA and MeJA, and improve the salt tolerance of mango. These results are beneficial to future researchers aiming to understand the biological functions and molecular mechanisms of MiCOMT genes.


Assuntos
Mangifera , Metiltransferases , Mangifera/genética , Proteínas de Plantas/genética , Tolerância ao Sal/genética , Filogenia , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Secas , Plantas Geneticamente Modificadas/genética
2.
Int J Biol Macromol ; 253(Pt 8): 127665, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37884236

RESUMO

Carotenoids are essential and beneficial substances for both plant and human health. Identifying the regulatory network of these pigments is necessary for improving fruit quality and commodity value. In this study, we performed integrative analyses of transcriptome data from two different type fruits, ripening peel color at green ('Neelum' mango) and red ('Irwin' mango). Specifically, we found that MiMYB10 transcription level was highly associated with mango peel color. Further, silencing MiMYB10 homologous gene in tomato fruits resulted in lower carotenoid and anthocyanin content. Electrophoretic mobility shift assays and dual-luciferase clarified that MiMYB10 regulates the carotenoid biosynthesis gene MiPDS (phytoene desaturase gene) in a direct manner. On the other hand, MiMYB10 activates the expression of carotenoid biosynthesis genes (PSY, Z-ISO, CRTISO, LCYE) and chlorophyll degradation gene (SGR1), promoting the accumulation of carotenoid, accelerating chlorophyll degradation, and controlling peel color. In summary, this study identified important roles of MiMYB10 in pigment regulatory and provided new options for breeding strategies aiming to improve fruit quality.


Assuntos
Mangifera , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Frutas/metabolismo , Mangifera/genética , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Carotenoides/metabolismo , Clorofila/genética , Clorofila/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Int J Gen Med ; 16: 3219-3227, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37546240

RESUMO

Objective: This study aimed to observe the impact of the hospital-community-family integrated nursing paradigm on the compliance, psychological state, and blood lipid levels in patients with hyperlipidemia pancreatitis (HLP). Methods: Totally 66 HLP patients treated in our institution between June 2018 and June 2021 were randomized to Exp group and Con group. The Exp group received the hospital-community-family integrated nursing mode, whereas Con group adopted conventional nursing. Outcome measures included patient compliance, mental state, and blood cholesterol levels. Results: Patients with integrated nursing exhibited markedly higher compliance than those with conventional nursing, as evinced by higher scores of compliance behavior, compliance awareness, medication attitude, and treatment attitude (P < 0.05). Integrated nursing offered more potent mitigation of negative emotions of patients than conventional nursing (P < 0.05). Integrated nursing resulted in better enhanced quality of life of patients versus conventional nursing (P < 0.05). Superior blood lipid amelioration was observed in patients after integration nursing versus those after conventional nursing, demonstrated by a higher serum high-density lipoprotein (HDL) level, and lower levels of triglycerides (TG), cholesterol (TC), and low-density lipoprotein (LDL) (P < 0.05). Patients were more satisfied with integrated nursing (96.97%) than conventional nursing (72.73%), suggesting a high patient acceptance of the nursing mode (P < 0.05). Conclusion: The hospital-community-family integrated nursing model provides a viable alternative to enhance HLP patients' compliance and optimize their psychological state and blood lipid levels, demonstrating good potential for clinical promotion.

4.
Int J Mol Sci ; 24(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37569360

RESUMO

Mangoes (Mangifera indica L.) are an important kind of perennial fruit tree, but their biochemical testing method and transformation technology were insufficient and had not been rigorously explored. The protoplast technology is an excellent method for creating a rapid and effective tool for transient expression and transformation assays, particularly in plants that lack an Agrobacterium-mediated plant transformation system. This study optimized the conditions of the protoplast isolation and transformation system, which can provide a lot of help in the gene expression regulation study of mango. The most beneficial protoplast isolation conditions were 150 mg/mL of cellulase R-10 and 180 mg/mL of macerozyme R-10 in the digestion solution at pH 5.6 and 12 h of digestion time. The 0.16 M and 0.08 M mannitol in wash solution (WI) and suspension for counting (MMG), respectively, were optimal for the protoplast isolation yield. The isolated leaf protoplasts (~5.4 × 105 cells/10 mL) were transfected for 30 min mediated by 40% calcium-chloride-based polyethylene glycol (PEG)-4000-CaCl2, from which 84.38% of the protoplasts were transformed. About 0.08 M and 0.12 M of mannitol concentration in MMG and transfection solutions, respectively, were optimal for protoplast viability. Under the florescence signal, GFP was seen in the transformed protoplasts. This showed that the target gene was successfully induced into the protoplast and that it can be transcribed and translated. Experimental results in this paper show that our high-efficiency protoplast isolation and PEG-mediated transformation protocols can provide excellent new methods for creating a rapid and effective tool for the molecular mechanism study of mangoes.


Assuntos
Mangifera , Mangifera/genética , Protoplastos/metabolismo , Folhas de Planta/genética , Transfecção
5.
Genomics ; 115(5): 110675, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37390936

RESUMO

Mango (Mangifera indica L.) is a widely appreciated tropical fruit for its rich color and nutrition. However, knowledge on the molecular basis of color variation is limited. Here, we studied HY3 (yellowish-white pulp) and YX4 (yellow pulp), reaped with 24 h gap from the standard harvesting time. The carotenoids and total flavonoids increased with the advance of harvest time (YX4 > HY34). Transcriptome sequencing showed that higher expressions of the core carotenoid biosynthesis genes and flavonoid biosynthesis genes are correlated to their respective contents. The endogenous indole-3-acetic acid and jasmonic acid contents decreased but abscisic acid and ethylene contents increased with an increase in harvesting time (YX4 > HY34). Similar trends were observed for the corresponding genes. Our results indicate that the color differences are related to carotenoid and flavonoid contents, which in turn are influenced by phytohormone accumulation and signaling.


Assuntos
Mangifera , Mangifera/genética , Mangifera/metabolismo , Flavonoides/metabolismo , Transcriptoma , Reguladores de Crescimento de Plantas/metabolismo , Carotenoides/metabolismo , Metaboloma , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas
6.
Plants (Basel) ; 11(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36432870

RESUMO

Mango (Mangifera indica) is an economically important fruit tree, and is cultivated in tropical, subtropical, and dry-hot valley areas around the world. Mango fruits have high nutritional value, and are mainly consumed fresh and used for commercial purposes. Mango is affected by various environmental factors during its growth and development. The MYB transcription factors participates in various physiological activities of plants, such as phytohormone signal transduction and disease resistance. In this study, 54 MiMYB transcription factors were identified in the mango genome (371.6 Mb). A phylogenetic tree was drawn based on the amino acid sequences of 222 MYB proteins of mango and Arabidopsis. The phylogenetic tree showed that the members of the mango MYB gene family were divided into 7 group, including Groups 1, -3, -4, -5, -6, -8, and -9. Ka/Ks ratios generally indicated that the MiMYBs of mango were affected by negative or positive selection. Quantitative real-time PCR showed that the transcription levels of MiMYBs were different under abiotic and biotic stresses, including salicylic acid, methyl jasmonate, and H2O2 treatments, and Colletotrichum gloeosporioides and Xanthomonas campestris pv. mangiferaeindicae infection, respectively. The transcript levels of MiMYB5, -35, -36, and -54 simultaneously responded positively to early treatments with salicylic acid, methyl jasmonate, and H2O2. The transcript level of MiMYB54 was activated by pathogenic fungal and bacterial infection. These results are beneficial for future interested researchers aiming to understand the biological functions and molecular mechanisms of MiMYB genes.

7.
Gels ; 8(10)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36286106

RESUMO

A gelator 1 containing functional quinoline and Schiff base groups that could form organogels in DMF, DMSO, acetone, ethanol and 1,4-dioxane was designed and synthesized. The self-assembly process of geator 1 was characterized by field emission scanning electron microscopy (FESEM), UV-vis absorption spectroscopy, fluorescence emission spectroscopy, Fourier transform infrared spectroscopy(FTIR), X-ray powder diffraction (XRD) and water contact angle. Under non-covalent interactions, gelator 1 self-assembled into microbelts and nanofiber structures with different surface wettability. Weak fluorescence was emitted from the solution and gel state of 1. Interestingly, gelator 1 exhibited good selectivity and sensitivity towards Zn2+ in solution and gel states along with its emission enhancement and change. The emission intensity at 423 nm of solution 1 in 1,4-dioxane was slightly enhanced, and a new emission peak appeared at 545 nm along with its intensity sequentially strengthened in the titration process. The obvious ratiometric detection process was presented with a limit of detection (LOD) of 5.51 µM. The detection mechanism was revealed by a theoretical calculation and NMR titration experiment, which was that Zn2+ induced the transition from trans- to cis- of molecule 1 and further coordinated with 1. This study will introduce a new method for the construction of functional self-assembly gel sensors for the detection of Zn2+.

8.
Gels ; 8(8)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35892723

RESUMO

A novel gelator (1) based on a bis-pyridine derivative was designed and synthesized, which could form stable gels in methanol, ethanol, acetonitrile, ethyl acetate, DMF/H2O (4/1, v/v) and DMSO/H2O (4/1, v/v). The self-assembly process of gelator 1 was studied by field emission scanning electron microscopy (FESEM), UV-vis absorption spectroscopy, fluorescence emission spectroscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction and a water contact angle experiment. Gelator 1 exhibited obvious AIE behavior. On the base of its AIE, the gel of 1 could detect Hg2+, which resulted in fluorescence quenching and a gel-sol transition. 1H NMR titration experiments with Hg2+ revealed that the metal coordination interaction induced the fluorescence quenching and the breakdown of the noncovalent interaction in the gel system. This research provides a new molecular mode for designing a functional self-assembly gel system.

9.
Front Plant Sci ; 13: 1119384, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36743534

RESUMO

Introduction: Flavonoids are important water soluble secondary metabolites in plants, and light is one of the most essential environmental factors regulating flavonoids biosynthesis. In the previous study, we found bagging treatment significantly inhibited the accumulation of flavonols and anthocyanins but promoted the proanthocyanidins accumulation in the fruit peel of mango (Mangifera indica L.) cultivar 'Sensation', while the relevant molecular mechanism is still unknown. Methods: In this study, RNA-seq was conducted to identify the key pathways and genes involved in the light-regulated flavonoids biosynthesis in mango peel. Results: By weighted gene co-expression network analysis (WGCNA), 16 flavonoids biosynthetic genes were crucial for different flavonoids compositions biosynthesis under bagging treatment in mango. The higher expression level of LAR (mango026327) in bagged samples might be the reason why light inhibits proanthocyanidins accumulation in mango peel. The reported MYB positively regulating anthocyanins biosynthesis in mango, MiMYB1, has also been identified by WGCNA in this study. Apart from MYB and bHLH, ERF, WRKY and bZIP were the three most important transcription factors (TFs) involved in the light-regulated flavonoids biosynthesis in mango, with both activators and repressors. Surprisingly, two HY5 transcripts, which are usually induced by light, showed higher expression level in bagged samples. Discussion: Our results provide new insights of the regulatory effect of light on the flavonoids biosynthesis in mango fruit peel.

10.
Genome Biol ; 21(1): 60, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32143734

RESUMO

BACKGROUND: Mango is one of the world's most important tropical fruits. It belongs to the family Anacardiaceae, which includes several other economically important species, notably cashew, sumac and pistachio from other genera. Many species in this family produce family-specific urushiols and related phenols, which can induce contact dermatitis. RESULTS: We generate a chromosome-scale genome assembly of mango, providing a reference genome for the Anacardiaceae family. Our results indicate the occurrence of a recent whole-genome duplication (WGD) event in mango. Duplicated genes preferentially retained include photosynthetic, photorespiration, and lipid metabolic genes that may have provided adaptive advantages to sharp historical decreases in atmospheric carbon dioxide and global temperatures. A notable example of an extended gene family is the chalcone synthase (CHS) family of genes, and particular genes in this family show universally higher expression in peels than in flesh, likely for the biosynthesis of urushiols and related phenols. Genome resequencing reveals two distinct groups of mango varieties, with commercial varieties clustered with India germplasms and demonstrating allelic admixture, and indigenous varieties from Southeast Asia in the second group. Landraces indigenous in China formed distinct clades, and some showed admixture in genomes. CONCLUSIONS: Analysis of chromosome-scale mango genome sequences reveals photosynthesis and lipid metabolism are preferentially retained after a recent WGD event, and expansion of CHS genes is likely associated with urushiol biosynthesis in mango. Genome resequencing clarifies two groups of mango varieties, discovers allelic admixture in commercial varieties, and shows distinct genetic background of landraces.


Assuntos
Evolução Molecular , Genoma de Planta , Mangifera/genética , Aciltransferases/genética , Domesticação , Frutas/genética , Variação Genética , Mangifera/metabolismo , Fenóis/metabolismo , Pigmentação/genética
11.
Nanoscale ; 11(22): 10911-10920, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31139798

RESUMO

A novel multifunctional gelator (1) based on an azobenzene derivative was designed and characterized. This compound could gelate some solvents including hexane, petroleum ether, DMSO, acetonitrile and ethanol through a heating-cooling procedure. The self-assembly process in different solvents was studied by means of UV-vis absorption and Fourier transform infrared (FTIR) spectra, field emission scanning electron microscopy (FESEM), rheological measurements, X-ray powder diffraction and water contact angle experiments. Interestingly, compound 1 had a high-contrast colorimetric detection ability towards Hg2+, Cu2+, Fe3+ and volatile acids and further organic amine gases in solution through its color change. At the same time, organogel 1 in acetonitrile also exhibited detection performance through a color or gel state change. In the response process, the self-assembly structures were changed from a nanofiber into a microsphere under induction by analytes. More significantly, film 1 could continuously detect volatile acids and organic amine gases. The number of cycles of film 1 for the detection of volatile acids and organic amine gases was at least seven times. The limit of detection (LOD) of film 1 towards TFA was calculated to be 0.0848 ppb. The sensing mechanisms were studied using 1HNMR, FESEM, UV-vis absorption spectra and HRMS. The intramolecular cyclization occurred on molecule 1 and a H2S molecule was lost during the detection process of Hg2+. It was proposed that the -N[double bond, length as m-dash]N- bonding could be coordinated by Fe3+ and Cu2+ and this further induced the absorption spectra and color change. For a volatile acid, it was possible that the volatile acid was combined with the N,N-dimethyl amine group of molecule 1. This research opens up a novel pathway to the fabrication of supramolecular self-assembly gels to detect polymetallic ions and trace volatile acids in the environment.

12.
Langmuir ; 34(25): 7404-7415, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29874461

RESUMO

A series of naphthalimide derivative gelators (G-o, G-m, and G-p) with three molecular isomers as their terminal groups were designed and synthesized. Only G-m and G-p could form stable organogels in some solvents including methanol, acetonitrile, n-hexane, toluene, ethanol, DMSO, DMF, and mixed solvents of acetonitrile/H2O (1/1, v/v). The different self-assembly structures were obtained from the self-assembly process of G-o, G-m, and G-p such as structures like a Chinese chestnut formed by irregular micrometer pieces, microbelts, and microbelt structures mingled with the bird's nest structures which exhibited different surface hydrophobicity with water contact angles of 121-139° due to their different intermolecular noncovalent interactions. To our surprise, G-p acetonitrile solution emitted 492 nm light with a red-shift of 72 nm compared with that emitted from G-o and G-m acetonitrile solution under 350 nm light excitation. Three gelators showed different detection abilities toward metal ions. G-o did not have any ability for sensitive and selective detection toward any ion. In contrast, G-m and G-p could sensitively and selectively detect Hg2+ and Fe3+. The detection limits for Fe3+ and Hg 2+ by G-m were 4.76 × 10-5 M and 7.01 × 10-6 M with the corresponding association constants ( K) of 1.64 × 104 and 3.79 × 104 M-1, respectively. The detection limits for Fe3+ and Hg2+ by G-p were 3.26 × 10-5 and 1.77 × 10-6 M with the corresponding K of 1.44 × 105 and 1.99 × 104 M-1, respectively. More interestingly, the back-titration of SCN- could distinguish Hg2+ from Fe3+. At the same time, xerogels G-m and G-p also exhibited responsiveness toward Fe3+ and Hg2+ through fluorescence changes. The photophysical properties, gel formation, hierarchical structures, surface wettability, and their function in this self-assembly system could be tuned through the molecular isomer effect. This work provides a new research paradigm for molecular isomer tuned supramolecular self-assembly materials from noncovalent interaction to molecular function.

13.
Langmuir ; 33(31): 7788-7798, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28718285

RESUMO

Two simple and novel gelators (G-P with pyridine and G-B with benzene) with different C-4 substitution groups on naphthalimide derivatives have been designed and characterized. Two gelators could form organogels in some solvents or mixed solvents. The self-assembly processes of G-P in a mixed solvent of acetonitrile/H2O (1/1, v/v) and G-B in acetonitrile were studied by means of electron microscopy and spectroscopy. The organogel of G-P in the mixed solvent of acetonitrile/H2O (1/1, v/v) formed an intertwined fiber network, and its emission spectrum had an obvious blue shift compared with that of solution. By contrast, the organogel of G-B in acetonitrile formed a straight fiber, and its emission had an obvious red shift compared with that of solution. G-P and G-B were employed in detecting nitroaromatic compounds because of their electron-rich property. G-P is more sensitive and selective toward 2,4,6-trinitrophenol (TNP) compared with G-B. The sensing mechanisms were investigated by 1H NMR spectroscopic experiments and theoretical calculations. From these experimental results, it is proposed that electron transfer occurs from the electron-rich G-P molecule to the electron-deficient TNP because of the possibility of complex formation between G-P and TNP. The G-P molecule could detect TNP in water, organic solvent media, as well as using test strips. It is worth mentioning that the organogel G-P can not only detect TNP but also remove TNP from the solution into the organogel system.

14.
Soft Matter ; 13(20): 3802-3811, 2017 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-28485752

RESUMO

A thiophene-based hybrid organogel system consisting of complex iridium (Ir) and EuCl3·6H2O was designed and synthesized to realize dual responses to volatile acids and organic amine vapors. The photophysical properties and self-assembly of compound 1 and the hybrid organogel were also studied. Compound 1 could gelate some organic solvents and self-assemble into 3D nanofibers in the gels. The stable hybrid organogel 1-Ir-Eu could be obtained after addition of complex Ir and EuCl3·6H2O. FTIR spectral results showed that the hydrogen bond still remained even upon addition of complex Ir, EuCl3·6H2O, NaOH and CF3COOH to organogel 1. Interestingly, the emission properties of the hybrid organogel 1-Ir-Eu could undergo interconversion between cyan light and red light via addition of NaOH and CF3COOH. The emission properties of xerogel film 1-Ir-Eu obtained in the presence of NaOH could also undergo fast and reversible transition in response to volatile acids such as CF3COOH, formic acid, acetic acid, propionic acid and organic amine vapors such as ammonium hydroxide, Et3N, tripropylamine, and ethylenediamine. The emission spectral change of Ir-Eu in the organogel or xerogel in the presence of base and acid demonstrated the formation of a new complex between complex Ir and EuCl3·6H2O. This dual-response process could be repeated many times. Contact angle experiment results further showed the morphology and internal components of the xerogel film surface in the process of response to gaseous CF3COOH and Et3N. This work provides a method for producing multifunctional supramolecular materials for sensing volatile acids and organic amine vapors.

15.
J Colloid Interface Sci ; 494: 170-177, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28157635

RESUMO

A new serial of gelators with two cholesteryl groups based on o-phenylenediamine, m-phenylenediamine and p-phenylenediamine were synthesized, and their organogelation ability was evaluated. We found that G-o could form gels in DMF, DMSO and ethyl acetate, G-m and G-p could only gel DMF and 1,4-dioxane. The organogels were thoroughly characterized using various microscopic techniques including field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), UV-Vis spectrum, FT-IR spectrum and contact angle. The gelation ability, morphology, self-assembly mode and materials surface wettability all could be tuned via isomeride effect in self-assembly system. Interestingly, superhydrophobic surface was formed via the self-assembly of compound G-p in 1,4-dioxane and exhibited very high adsorption capacity for water. This gel system provided new method for modulation self-assembly process in supramolecular field.

16.
Mater Sci Eng C Mater Biol Appl ; 70(Pt 1): 216-222, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27770884

RESUMO

Two new gelators containing bis-naphthalimides group were designed and synthesized. The gelator 1b could form gels in DMF and mixed solvent of DMSO/H2O (10/1, v/v). The self-assembly processes of 1b in two kinds of solvents were detailedly investigated by UV-vis, fluorescence, infrared spectroscopy, field emission scanning electron microscope (FE-SEM), X-ray diffraction and contact angle experiments. The experiment results showed the hydrogen bonding was the main force for the gel formation. The gel 1b formed in mixed solvent of DMSO/H2O (10/1, v/v) possessed of the ability of distinguishing of o-phenylenediamine, m-phenylenediamine and p-phenylenediamine. At the same time, the gelator 1b could selectively and sensitively detect p-phenylenediamine in solution with the detection limit of 8.961×10-8ML-1. The detection experiment was also confirmed by DFT theoretical calculations. This research would expand the supramolecular self-assembly materials application in sensor field and offer a new detection method for organic amines.


Assuntos
Géis/química , Naftalimidas/química , Fenilenodiaminas/análise , Dimetil Sulfóxido/química , Dimetilformamida/química , Fenilenodiaminas/química , Rios/química , Soluções , Solventes/química , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química , Poluentes Químicos da Água/análise , Difração de Raios X
17.
Chem Asian J ; 11(22): 3196-3204, 2016 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-27685199

RESUMO

A series of bicholesteryl-based gelators with different central linker atoms C, N, and O (abbreviated to GC, GN, and GO, respectively) have been designed and synthesized. The self-assembly processes of these gelators were investigated by using gelation tests, field-emission scanning electron microscopy, field-emission transmission electron microscopy, UV/Vis absorption, IR spectroscopy, X-ray diffraction, rheology, and contact-angle experiments. The gelation ability, self-assembly morphology, rheological, and surface-wettability properties of these gelators strongly depend on the central linker atom of the gelator molecule. Specifically, GC and GN can form gels in three different solvents, whereas GO can only form a gel in N,N-dimethylformamide (DMF). Morphologies from nanofibers and nanosheets to nanospheres and nanotubes can be obtained with different central atoms. Gels of GC, GN, and GO formed in the same solvent (DMF) have different tolerances to external forces. All xerogels gave a hydrophobic surface with contact angles that ranged from 121 to 152°. Quantum-chemical calculations indicate that the GC, GN, and GO molecules have very different steric structures. The results demonstrate that the central linker atom can efficiently modulate the molecular steric structure and thus regulate the supramolecular self-assembly process and properties of gelators.

18.
Int J Clin Exp Med ; 8(3): 4320-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26064348

RESUMO

UNLABELLED: To assess the clinical efficacy and safety of Silibinin in preventing drug-induced liver injury (DILI) in the general population (high-risk patients with non-drug induced liver injury). METHOD: A prospective, multi-center, randomized, open-label and controlled trial was conducted with 568 patients undergoing primary treatment of pulmonary tuberculosis. The study included 277 patients in experimental group and 291 patients in control group. The patients in the two group were treated with conventional 2HREZ (S)/4HR for tuberculosis (TB), and additional Silibinin capsules (oral administration of 70 mg/time, 3 times/day for 8 weeks in experimental group. Outcomes of liver function, interruption of anti-TB treatment and therapeutic results, as well as adverse reactions were observed and analyzed. RESULTS: At 2, 4 and 8 weeks of treatment, the incidences of liver injury in experimental group were 3.97%, 1.44% and 2.17%, respectively; the incidences in control group were 4.12%, 4.12% and 2.41%, respectively. Statistical analysis showed that there was no difference in the incidence between the two groups at each treatment period (P>0.05). At 8 weeks, the numbers of patients diagnosed of DILI were 18 (7.22%) and 27 (9.28%) in experimental and control groups, respectively (P>0.05). 34.30% and 27.49% of the patients in experimental and control groups had transient abnormal liver function or symptoms, respectively; similar percentages (3.25% and 6.19%) of the patients in two groups have liver function injury and symptoms, and were suspended for anti-TB treatment (P>0.05). The incidence of anorexia and nausea symptoms was lower in experimental group than in control group, and the differences were significant at 4 and 8 weeks (P<0.05). 8 weeks after the treatment, 98.30% of the sputum smear culture were negative in experimental group, which was significantly higher (P<0.01) than that in control group (92.98%). CONCLUSION: Preventive hepatoprotective therapy in the general population may reduce drug discontinuation rate, improve patient's compliance and outcomes of anti-TB treatment.

19.
Org Biomol Chem ; 12(33): 6399-405, 2014 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-25008147

RESUMO

A new gelator 1 based on a simple naphthalimide derivative was synthesized and fully characterized. It was found that the organogel 1 was formed only in a mixed solvent of methanol and H2O (1/1, v/v). The organogel was thoroughly characterized by using various microscopic techniques including field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and UV-vis, fluorescence and Fourier transform infrared (FTIR) spectroscopy. Hydrogen bonds were the main driving force for the organogel formation. Interestingly, the organogel 1 exhibited the ability to distinguish aliphatic amines from aromatic amines. The gel state and fluorescence emission intensity were both changed after two minutes after the addition of aliphatic amines. This organogel system could be applied in the detection of aliphatic amine pollutants.

20.
Org Biomol Chem ; 11(45): 7931-7, 2013 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-24135789

RESUMO

A new gelator 1 that included m-methyl red was synthesized and fully characterized. It was found that the organogel of 1 was stable in DMSO even if the organogel was stimulated by acid or light. The organogel was thoroughly characterized using various microscopic techniques including field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), UV-vis and Fourier transform infrared (FTIR) spectra. The organogel exhibited tunable structures and optical properties under different stimulation. The regular nanoring structure was turned into microspheres after the organogel in DMSO was stimulated at 254 nm light or acid. At the same time, the color of molecule 1 in gel state and solution state was all changed after stimulation by light or acid. The hydrogen bonding and π-π stacking were found to be the main driving forces for gel formation. This dual-responsive gel held promise for soft materials application in upscale smart responsive materials.


Assuntos
Ácidos/química , Compostos Azo/síntese química , Luz , Compostos Azo/química , Géis/síntese química , Géis/química , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...